Journal of Energy Research and Reviews <p style="text-align: justify;"><strong>Journal of Energy Research and Reviews (ISSN: 2581-8368)</strong>&nbsp;aims to publish high-quality papers (<a href="/index.php/JENRR/general-guideline-for-authors">Click here for Types of paper</a>) in all areas&nbsp;of energy generation, distribution, storage, management, production, conversion, conservation, systems, technologies and applications, and their impact on the environment and sustainable development. Articles related to the environmental, societal, and economic impacts of energy use and policy will also be considered.&nbsp;The journal also encourages the submission of useful reports of negative results. This is a quality controlled,&nbsp;OPEN&nbsp;peer-reviewed, open access INTERNATIONAL journal.</p> en-US (Journal of Energy Research and Reviews) (Journal of Energy Research and Reviews) Tue, 12 May 2020 12:15:09 +0000 OJS 60 Direct Solvent Liquefaction of Tropical Hardwood Bark and Characterization of the Resulting Bio-Oil <p>Ethanol, water and ethanol/water mix were used to directly liquefy <em>Detarium senegalense</em> bark at 500°C for 15 min. Ethanol/water mix at 50/50% weight by weight showed synergistic effect on biomass direct liquefaction, and was found to be the most effective solvent for the liquefaction of <em>Detarium senegalense</em> bark. Water was more active than Ethanol when both mono-solvents were evaluated. Liquefaction with 100% water yielded 46% by weight of the bio-oil, compared with 30% by weight of bio-oil yield when 100% ethanol was used. The result however, show that 50% ethanol/water showed a synergistic effect and work best to obtain 52% bio-oil on the liquefaction whereas water was found hence more active than ethanol as a single solvent with 46% and 30% bio-oil respectively.</p> <p>The GC-MS analysis of the obtained bio-oils from the three matrices confirmed the presence of phenolic compounds and aromatics such as benzenes, followed by aldehydes, long chain ketones and cyclic ketones and alcohol, esters, organic acids and ether compounds. The detected phenolic compounds were 4-ethyl-guaiacol, 2-methoxy-4-(2-propenyl)-phenol, 2-methoxy-phenol, and 2-methoxy-4-vinyl-phenol., formed from the cleavage of guaiacyl and hydroxyphenyl-type lignin with varying degrees of alcohol substitution. Understanding and evaluating the liquefied products obtained from hardwood barks, could offer valuable information on the utilization of the biomass-liquefaction products for chemical or energy production.</p> Yetunde B. Olayiwola, Olajide A. Oluyege, Lajide Labunmi ##submission.copyrightStatement## Tue, 12 May 2020 00:00:00 +0000 Evaluation of Properties of Composite Panels Fabricated from Waste Newspaper and Wood Dust for Structural Application <p>In this work, dry forms of waste newspaper pulp, untreated wood dust and treated wood dust were used at varying weight proportions to fabricate composite panels which thenafter served as test samples. With increase in the content of either the untreated wood dust or the treated wood dust in the developed panels, the results showed increase in the mean values of bulk density, thermal conductivity, thermal diffusivity, flexural strength but decrease in the mean values of specific heat capacity and percentage water absorption. Also, at p &lt; 0.05, significant differences were revealed in the mean values of bulk density and specific heat capacity between the results obtained for samples with untreated wood dust content and those associated with samples containing the treated wood dust. Again, samples containing the untreated wood dust were found to be better thermal insulators but with lower flexural strength than those of same proportions of the treated wood dust component. From application viewpoint, the findings in this work indicated that the fabricated samples could compete favorably with conventional materials commonly used for thermal insulation in buildings. It is, therefore, obvious that recycling waste newspaper and wood dust into such panels can help to reduce the adverse effect of the waste materials on environment also improve economy by providing building sector with low-cost and environmentally-friendly insulation materials suitable for internal building design.</p> Ekong Ufot Nathaniel, Ubong Williams Robert, Mercy Effiong Asuquo ##submission.copyrightStatement## Wed, 13 May 2020 00:00:00 +0000