An Experimental Study on Biomass Fuel Briquettes’ Quality as a Product of Waste Conversion in Nekede, Owerri, Nigeria

O. O. Mong a*, O. E. Obi a, C. E. Onyeocha b, C. O. Ndubuisi b, D. V. Gaven a and V. Nnadiegbulam a

a Department of Mechanical Engineering, Federal Polytechnic Nekede, Owerri, Imo State, Nigeria.
b Department of Agricultural and Bio-Environmental Engineering, Federal Polytechnic Nekede, Owerri, Imo State, Nigeria.

Authors’ contributions
This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

ABSTRACT
This study investigated the quality of biomass fuel briquettes; a Refuse Derived Fuel (RDF) made from bio-wastes generated from a local farm produce market in Nekede, Owerri, Nigeria, known as Umuokomoche daily market. The wastes were mainly waste groceries; vegetable stems, leaves, fruits, plantain peels and stems, yam and potato peels, corn hob and all sorts of discarded food / agro materials which constitute over 70% of the total Municipal Solid Wastes (MSW) generated by the community. The study involved the design, fabrication and installation of a piston-type, hydraulic powered pedal operated Biomass Briquetting Machine. The briquettes produced were tested, in order to ascertain their quality as Refuse Derived Fuels (RDF). The biomass wastes generated were initially gathered, sun dried and carbonized through pyrolysis in a kiln. The biochar was then crushed and mixed with a 20% starch bond and finally fed to the machine as feedstock. The products (briquettes) recorded satisfactory combustion outcomes when tested. The preliminary
results showed a calorific value of 4900Kcal/Kg which is adequate as a reliable and alternative energy source for domestic and industrial applications. Other parameters tested are; fixed carbon at 32%, Volatile matter at 44%, Moisture at 5% and are Ash content at 5.02%. A bulk density of 580 kg/m3 and a Compressive ratio of 1:2.5 were also recorded. Both results confirm the handling ability and ease of transportation of the briquettes. Therefore the briquettes are of good quality and reliable as an alternative energy source for domestic and industrial applications.

Keywords: Biomass; briquettes; fuel wood; pyrolysis; calorific value; agro-waste; municipal solid waste.

1. INTRODUCTION

The current energy poverty in Nigeria, occasioned by increasing energy demand, insufficient grid electricity supply, increasing costs and shortage of fossil fuel resource and the attendant effects on the environment in form of pollutions, greenhouse gas emissions and general environmental imbalance are current topical issues and requires urgent intervention. The concern that fossil fuel resources are tending towards exhaustion require concerted efforts of all stakeholders towards finding new, sustainable and alternative energy sources [1].

Biomass fuel briquettes have received global acceptability as a better replacement to fuel wood (firewood) and charcoals for heating, cooking and other industrial applications in urban and rural areas. The Nigerian Conservation Foundation (NCF) reported that Nigeria had lost almost all of its original forest because of deforestation and this is partly attributed to the use of fuel wood and charcoal for energy [2]. In 2020, the country lost 97.8 kilohectares of natural forest which approximated to emission of 59.5 metric ton of greenhouse gas (CO2) to the environment [3].

In Nigeria, biomass is the most dominant source of energy and is used significantly in the domestic sector for cooking and many other heat applications. Wood fuels, in the form of forest wood, charcoal and wood processing residues are the most dominant biomass forms of energy in use in Nigeria, although crop residue and other non-woody materials also find some usage. Sa’ad and Bugaje [4] have attributed this high demand for wood and wood waste to occurrence of energy poverty in Nigeria. Most rural dwellers (about 70% of people in Nigeria) and almost all farmers heavily depend on fuel wood for all their domestic and other commercial activities that require heat [5]. The attraction for biomass briquettes has been premised on its ease of production; sustainable supply advantages; and environmental benefits (minimum environmental pollution). Ngumbi et al [6] described “briquetting as the process which converts these low density biomass into high density and energy concentrated fuel”.

Biomass briquetting is the densification of loose biomass material to produce compact solid composites of different sizes with the application of pressure. Briquetting of residues takes place with the application of pressure, heat and binding agent on the loose materials to produce the briquettes.

1.1 Classification of Biomass Briquetting Machines

Briquetting machine could be classified based on the compaction (compression) pressure of the machine. Thus, we have; Low compaction pressure machines (below 5MPa), Intermediate Compaction pressure Machines (5 to 100MPa), High Compaction pressure machines (100MPa and above) [7-8]. Also, Biomass Briquetting Machines can be grouped depending on the type of equipment used, vis-a-vis the mechanism and mode of operation, thus we have Piston press, Screw press, Roll press, Pelletizing and Low pressure (manual presses) briquetting machines respectively [9-16].

Orhorhororo et al [17] designed and fabricated an Improved Low Cost Biomass Briquetting Machine based on mechanical hydraulic powered piston compression principle. The biomass (elephant grass) had calorific values of 14011.2KJ/kg before briquetting. The calorific value increased to 15013.9KJ/Kg after formation of briquette. This increase was partly attributed to the moisture content of the biomass. Agidi et al [18] reported a hydraulically operated machine for making briquette from agricultural wastes. The results of testing of the equipment revealed that the highest binder concentration ratios of 30% and 40% produced the best result. Yirijor et al [19] assessed the physical and mechanical properties
of briquettes produced from dry coconut husk tagged “CNH” and cocoa pod tagged “CCP” Ghana. The agro-waste was gathered, carbonised at 450°C carbonizing temperature. The two form of waste were hammer-milled and mixed at various ratios. The mix ratio, that recorded the highest heating value of 25.83 MJ/kg, good moisture and ash content, as well as good density and durability index was CNP : CCP at 20:80 mix ratio. Akintaro et al. [20] as reported in their study used three binders which were cassava starch, corn starch and gelatin and they produced carbonized corncobs briquettes. The maximum values of moisture content, volatile matter, ash content, fixed carbon and calorific value are 7.62 %, 16.48 %, 5.06 %, 81.30 % and 32.36 MJ/kg respectively. Laukik and Nikhil [21] designed an automatic screw press briquetting machine for processing of agro-wastes to briquettes fuels in rural India. They used a 1Hp motor and a belt drive transmission and reported high performance.

The objective of the study is to design, fabricate and install a piston-type, hydraulic powered pedal operated Biomass Briquetting Machine. The briquettes produced will be tested, in order to ascertain their quality as Refuse Derived Fuels (RDF).

2. METHODOLOGY

2.1 Design Considerations

The hydraulic pedal operated briquetting machine was designed to be compact and to take less space when installed. Therefore, portrait shape, rather than landscape was chosen.

The machine was designed to produce nine (solid or hollowed) briquettes per batch, at briquettes diameter of 68 mm. The length and shape of the machine was formed by the following, viz; the height of the piston (male member) and cylinder (female member) components at full compression (300 mm), the full length of the hydraulic jack at full compression (400 mm), the piston base plate thickness and jack sittings (10 mm). The choice of the width of the machine was based on the diameter of mould cylinder, vis-à-vis the briquette size. Thus, the choice of the appropriate tonnage of hydraulic jack was made, after calculating all the masses the jack is expected to lift.

The mass of one compression piston = 500g

For 9 compression pistons we have $9 \times 500g = 4500g = 4.5kg$

Mass of one Hole making rod (briquette hole creator) = 390g, for nine,

we have $9 \times 390g = 3510g = 3.51kg$

The mass base of one plate = 3.5kg

Mass of briquette = 90g, for nine briquettes, we have, $9 \times 90g = 810g = 0.8kg$

Therefore, total mass to be lifted by the jack is the summation of the masses.

$$= 4.5kg + 3.51kg + 3.5kg + 0.8kg = 12.31kg$$

Osarenmwinda and Ihenyen [22] in their work considered acceleration due to gravity, g.

Thus, taking $g = 9.81$

Therefore, a 10 tonnes Hydraulic Jack was selected for the machine.

2.2 Description of Components of the Pedal Operated Biomass Briquetting Machine

There are nine cylinders, each of 70mm inside diameter placed on a 5mm thick plate, which coincided with a nine pistons each of 68mm external diameter Placed concentrically under the cylinder as shown in Fig. 1. The upward movement of the piston in the cylinder brings about the compression or densification of the biomass.

A hydraulic jack of 10 ton, which is operated by foot-pedaling provides the piston motion of the machine, thereby compressing the carbonized biomass in the cylinder. The biomass is fed to the cylinder through the door placed on top of the machine as shown in Fig. 1. The product is also removed from that same door after compression.

The machine is provided with a lever, a stopper and a briquette’s hole creator. The lever helps in pushing out the briquettes from the cylinders after compression while the moveable stopper
provides a wedge for the piston plate whenever jacking is stopped or paused. Moreover, a hole creator (pattern) is a removable rod which creates a hole on the center of the briquettes thereby making it cylindrically hollowed. A nut, welded to the piston provides an attachment for the hole making pattern on the piston while a pattern guide helps to retain the vertical alignment of the hole making pattern.

2.3 Fabrication

2.3.1 Methods of construction

This machine was fabricated using electric Arc welding. See the Fig 3. Design Parameters of the Pedal operated briquetting Machine is shown on Table 1.

3. EXPERIMENTATION

3.1 Process Flow for Briquetting

Waste materials gathered were agro-waste and Municipal Solid Waste (MSW) from a local food/farm produce market in Umuokomoche, Nekede, Owerri, Nigeria, a host community to Federal polytechnic Nekede, Owerri, Nigeria. The wastes mainly vegetable stems, fruits, yam and potato peels, coconut peels, plantain bunch and sorts of bio-wastes were cut into smaller sizes to enable faster drying. They were thereafter sundried for ten sunny days (Fig. 4). The dried biomass was pyrolysed in a kiln at temperature of 350 °C - 400°C for 45 minutes and was quenched with water. The biochar was then crushed into fine granules and mixed with a cassava processed starch solution as a bonding material. The starch was 20% of the total mass of biochar. Finally, the biomass-starch mixture was fed to the briquetting machine to produce briquettes. See Fig. 5 and Fig. 6. Briquettes produced were sundried to expel moisture added during mixing.

3.2 Composition of Briquettes

Briquettes comprised of the following:

3.2.1 Charred biomass

This is the lightweight black residue, made of carbon and ashes, remaining after the pyrolysis of biomass.

3.2.2 Briquette binder

Due to the lack of plasticity, the binder was added to the crushed biochar. The proportion of binder (starch) in the biocharred briquettes is 20% of the total mass of briquette.

3.3 Summarized Instructional Guide for the Pedal Operated Biomass

3.3.1 Briquetting machine

Attach the hole making rod ⇨ Fill cylinders to the brim with the biomass ⇨ Connect the pattern guide ⇨ Close the inlet or outlet door ⇨ Lock the doors with the help of bolt and nut attached to the door ⇨ Jacking: foot-pedal the hydraulic jack until the jack become very stiff ⇨ Introduce the moveable stopper directly under the piston plate and release the jack ⇨ Open the inlet/outlet door and press the lever to release the briquettes.

Fig. 1. Pedal operated biomass briquetting machine: Isometric and exploded views
Fig. 2. Orthographic views of mechanisms of the pedal operated briquetting machine

Fig. 3. Pedal operated biomass briquetting machine

Fig. 4. Process flow for Briquetting
Table 1. Design parameters of the pedal operated briquetting machine

<table>
<thead>
<tr>
<th>S/N</th>
<th>Part list</th>
<th>Quantity</th>
<th>Dimension (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Piston (male) member</td>
<td>9</td>
<td>Height=300 mm, Diameter= 68 mm</td>
</tr>
<tr>
<td>2</td>
<td>Cylinder (female) member</td>
<td>9</td>
<td>Length = 260 mm, Diameter = 70 mm</td>
</tr>
<tr>
<td>3</td>
<td>Jack</td>
<td>1</td>
<td>Height at rest = 200 mm, Height at load = 400 mm</td>
</tr>
<tr>
<td>4</td>
<td>Hollowed briquette making rod (removable in case of solid briquettes)</td>
<td>9</td>
<td>Length= 130 mm</td>
</tr>
<tr>
<td>5</td>
<td>Lever (removable)</td>
<td>2</td>
<td>820 mm long</td>
</tr>
<tr>
<td>6</td>
<td>Base plate</td>
<td>1</td>
<td>435 mm by 420 mm</td>
</tr>
<tr>
<td>7</td>
<td>Height of Briquetting Machine</td>
<td>1</td>
<td>800 mm</td>
</tr>
<tr>
<td>8</td>
<td>Width of Briquetting Machine</td>
<td>1</td>
<td>450mm</td>
</tr>
<tr>
<td>9</td>
<td>Compaction Pressure</td>
<td></td>
<td>Low Pressure</td>
</tr>
</tbody>
</table>

3.4 Briquettes Testing

3.4.1 Compression ratio

Agidi et al [18] calculated the height of the briquette samples as a ratio of the cylinder height.

\[C_{\text{ratio}} = \frac{H_{\text{cylinder}}}{H_{\text{cylinder}} - H_{\text{briquettes}}} \]

Where;

\[H_{\text{cylinder}} = \text{Height or length of cylinder (mm)} \]
\[H_{\text{briquettes}} = \text{Briquettes height (mm)} \]

3.4.2 Bulk density

The mass of briquettes were measured on a measuring balance in the laboratory. Also measured are the height thickness and diameter of the briquettes in order to calculate the volume.

\[\tau_{\text{bulk}} = \frac{M}{V} \]

Where;

\[\tau_{\text{bulk}} = \text{bulk density (kg/m}^3\text{)} \]
\[M = \text{mass (kg)} \]
\[V = \text{volume (m}^3\text{)} \]

3.4.3 Combustion Properties

3.4.3.1 Percentage Volatile Matter (PVM)

Thee briquettes sample was heated in a kiln at between 350 - 400\(^\circ\) for 20 mins. The PVM was then presented as percentage of weight loss at the sun dried weight of the original sample (Gbabo et al, [23], Agidi et al [18]).

\[\text{PVM} = \frac{\text{Weight of sundried sample} - \text{Weight of sample in kiln for 15 mins}}{\text{Weight of Sundried sample}} \]

3.4.3.2 The Heating Value

The heating value (calorific value) was calculated using a bomb calorimeter in line with the ASTM standard for determining calorific value. The test was done in compliance with ASTM D5865 -03 (ATM 2003b) standards for refuse derived fuels Yirijor et al [19].

3.4.3.3 Calculation of ash content

Ash is the left-over residue after biomass undergoes combustion. 1g of briquette sample was introduced on the crucible and the crucible
was placed in the furnace. The furnace was heated to 600°C at a gradual rate and was left for 1 hour, 30 minutes before cooling in a controlled space. The measurement was done in compliance with ASTM E 830-87 (2004 reapproved) standard for refuse derived fuels (RDF):

$$\text{Ash content (\%) } = \frac{(M_{\text{cubicile}} + M_{\text{residue}}) - M_{\text{cubicile}}}{M_{\text{briquette sample}}}$$

All masses are in grams

3.4.3.4 Percentage Fixed Carbon (PFC)

The percentage fixed carbon was calculated according to Babajide et al [24].

Thus,

$$\% \text{Fixed Carbon} = \frac{100\% \text{ briquette sample} - (\% \text{ volatile matter} + \% \text{Ash Content})}{M_{\text{briquette sample}}}$$

4. RESULTS AND DISCUSSION

The result of the investigation is presented on average values. Refer to Table 2;

Table 2. Summary of results (average values) of preliminary investigations

<table>
<thead>
<tr>
<th>Parameters tested</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compression ratio</td>
<td>2:2:1</td>
</tr>
<tr>
<td>Ash Content</td>
<td>5.02 %</td>
</tr>
<tr>
<td>Volatile Matter</td>
<td>44%</td>
</tr>
<tr>
<td>Calorific Value</td>
<td>4900 Kcal/kg (19600 KJ/Kg)</td>
</tr>
<tr>
<td>Fixed Carbon</td>
<td>32%</td>
</tr>
<tr>
<td>Moisture Content</td>
<td>5.0%</td>
</tr>
<tr>
<td>Bulk Density</td>
<td>502Kg/m3</td>
</tr>
<tr>
<td>Compressive Ratio</td>
<td>1:2:5</td>
</tr>
</tbody>
</table>

4.1 Volatile Matter

The volatile matter of this composite biomass briquette made from non-woody biomass recorded a volatile matter of 44% average value. This value is in line with 40% to 79% recorded by Beena and Bharat [25] for non-woody biomass. In terms of quality considerations, high volatile matter content in briquettes makes it to ignite easily. High volatile matter indicates that the briquette will readily ignite with appropriate flame [26-27]. Heating (pyrolysis) of briquettes liberated volatile matter which is a flammable gas and smoke that burns as a visible flame under sufficient air, time, temperature and turbulence [25].

4.2 Ash Content

Ash is the non-combustible fraction of the briquette obtained after combustion. The ash content for the briquette was 5.02%. This value is within the acceptable limit of 5-4 wt% for solid biomass [27-28]. It is also in line with 3.4% - 4.9% from non-woody biomass by Babajide et al [24], and lower than the value from Jirijor et al [19] which recorded 4.53% - 10.12% for non-woody biomass. High ash content is detrimental to combustion and leads to fire management problems, such as regularly removing ash from the stove. At higher temperature, excess ash fuses (soften), thereby forming clinker that entraps combustible matter thereby blocking air distribution. Therefore, the briquettes met the acceptable quality in terms of ash concentration.

4.3 Calorific Value

The briquettes generated a heating value of 4900 Kcal/Kg (19600 KJ/Kg) which exceeded the minimum heating value for commercial briquette production [19].

4.4 Moisture Content

From table 2, the moisture content for the briquette is 5.0%. Note that, the binder concentration was 20% throughout the production. The result compares very well with 4.43 – 7.62% recorded by Akintaro et al [20], 10.3% - 12.2% by Ilochi [29], Beena and Bharat [25]. The result recorded in this work agrees with Pellavi et al [30] which placed moisture content for good quality briquettes at 5 – 10% Note that moisture content in briquettes fuels affects combustion and should therefore be as low as possible.

4.5 Fixed Carbon

Percentage fixed carbon determines the heating value of the fuel briquette. The higher the fixed carbon content, the higher the heating value. For the fuel briquette produced, a fixed carbon of 32% was recorded. The results is in agreement with Babajide [24], Akogun & Waheed [31] which recorded 17.85% - 39.50% for similar waste.

The good fixed carbon value was achieved due to the Pyrolysis before the briquetting process.
4.6 Bulk Density and Compressive Strength

The bulk density of the briquettes produced recorded an average value of 502kg/m³ which is a great improvement from 80 to 100 kg/m³ range of bulk density for loose biomass. The result is in line with Babajide et al [24] and Lubwama et al [32], which reported 430 to 580 kg/m³. A Compressive ratio of 1:2.5 was also recorded. The both results confirm the handling ability and ease of transportation of the briquettes.

5. CONCLUSION

An experimental investigation of biomass fuel briquettes’ quality as a product of waste conversion in Nekede, Owerri, Nigeria has been presented. An experimental rig, was designed, fabricated and was found useful and efficient in converting agro/food wastes materials (Municipal Solid Wastes) to a refuse derived fuels (RDF) known as biomass briquettes. Investigation of the briquettes fuels quality and usefulness showed that the fuels are capable of generating heat energy for domestic and industrial applications. The results of testing of the briquettes showed a caloric value of 4900Kcal/Kg and a bulk density of 502kg/m³. Other parameters tested are; fixed carbon at 32%, Volatile matter at 44%, Moisture at 5% and are Ash content at 5.02%. Therefore the briquettes are of good quality and reliable as an alternative energy source for domestic and industrial applications.

ACKNOWLEDGEMENTS

The authors are grateful to the Tertiary Education Trust Fund (TETFUND) for sponsoring this research under its Institutional Based Research (IBR) Scheme.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

© 2023 Mong et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/102607