Assessment of the Potential for Methane Emissions Caused by the Livestock Sector in the Region of Kankan, Guinea

Ansoumane Sakouvogui a*, Amadou Sidibe b, Ibrahima Sory 5 Diallo b and Mamby Keita c

a Energy Department, Higher Institute of Technology of Mamou, Guinea.

b Department of Physics, Faculty of Natural Sciences of the Julius Nyéré University of Kankan, Guinea.

c Department of Physics, Faculty of Sciences, Gamal Abdel Nasser University of Conakry, Guinea.

Authors' contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

ABSTRACT

Man has always organized his living space near animal farms. Nevertheless, the population growth and the healthiness due to the droppings of these animals have motivated work on the recovery of animal waste. This study follows this logic. It consists in the evaluation of the potential of methane emissions due to the livestock sector in the Administrative Region of Kankan. The methodological approach adopted for this study consists in carrying out a field survey for the census of animal herds, the use of data from different livestock services and the formulas have enabled us to make an estimate of methane emissions from the sector. livestock in the region. The surveys took place from December 15, 2021 to March 30, 2022. The results obtained show that the greatest quantity of emissions is recorded in Siguiiri (25772923 kg/year), followed respectively by Kérouané (23452057 kg/year), Mandiana (23023031 kg/year), Kouroussa (20515857 kg/year), and Kankan (16144187 kg/year). With total annual emissions in the region of 108908054 kg/year. The results of this research is a first estimate of the CH$_4$ emission potential due to the livestock sector in the administrative region of Kankan. This study must be encouraged by authorities at all levels of the environmental sector.

*Corresponding author: E-mail: ansoumane2015@gmail.com;
Keywords: Assessment; potential; emissions; methane; livestock.

1. INTRODUCTION

Climate change is a global issue that requires comprehensive and far-reaching solutions across all economic and demographic jurisdictions. The Paris Climate Agreement, adopted in 2015, sets out a global framework to address harmful climate impacts by limiting additional global warming to well below 2°C, (1.5°C goal). The accord recognizes regional differences and the need for specific actions across all jurisdictions, including developed economies providing leadership and assistance to developing nations in their climate mitigation efforts [1].

The study of the causes and effects of climate change has given rise to a large number of scientific works in various fields. A key point is now the study of the coupling between human activities and climate change, in particular in order to limit the harmful impacts for our societies [2,3]. In 2013, the Intergovernmental Panel on Climate Change (IPCC) highlighted the effect of human activities on the increase in greenhouse gas concentrations and therefore average surface temperatures (the temperature at the surface of the Earth would have increased by 0.85°C since 1850) [4,5]. Since the beginning of the industrial era, atmospheric concentrations of nitrous oxide (N\textsubscript{2}O), carbon dioxide (CO\textsubscript{2}) and methane (CH\textsubscript{4}) have increased by 15%, 30% and 150% respectively [6].

Faced with this environmental threat, the developed countries agreed in 1997 to establish a plan to reduce greenhouse gas emissions, this is the Kyoto Protocol. The report of the Intergovernmental Panel on Climate Change confirms and reinforces the certainty of the existence of an increase in the greenhouse effect due to human activities [7]. The consequences of climate change due to GHGs are multiple, we can cite: the melting and disappearance of glaciers, the reduction of water resources, the health consequences and the rise in sea level [8,9].

Like any human activity, livestock farming exerts a strong influence on the natural environment that surrounds it, this impact can be positive and/or negative for the ecosystems involved by the provision of benefits and pressures on the environment by emissions of GHGs throughout the chain [10]. There are three main GHGs emitted in the context of livestock-related activities, which are: CO\textsubscript{2}, CH\textsubscript{4} and N\textsubscript{2}O. About 44% of GHG emissions from the livestock sector are made up of CH\textsubscript{4} [11,12].

Africa’s livestock accounts for one-third of the global livestock population and about 40% of agricultural GDP in Africa, ranging from 10% to 80% in individual countries (Panel, 2020). Livestock will be increasingly important in the future in sub-Saharan Africa because the demand for animal-source food is projected to increase due to population growth, increased incomes, and urbanization [13].

In Guinea, livestock farming is the second most important activity in the rural world. It is a growth-enhancing sector that contributes substantially to food security and the fight against poverty. The national livestock census in 2017 gave: cattle (6407000); sheep and goats (459400). The poultry population is estimated at 284000000 poultry of local varieties and 1500000 hens of improved strains in semi-intensive poultry farms [14]. Livestock are an important source of CH\textsubscript{4} emissions due to their numbers, their ruminant digestive systems, in which enteric fermentation takes place and the management of their excreta (dung, manure, slurry, etc.) [15,16].

The global anthropogenic emission (63%) of the total CH\textsubscript{4} emissions comes mainly from swamps, ruminant breeding, rice cultivation, household waste dumps, oil and gas operations [17]. Methane emissions from manure management are generally less significant than enteric emissions. The largest emissions are associated with animal management operations in confined spaces, where manure is treated using liquid systems [18,19].

Two-thirds of the CH\textsubscript{4} from ruminant farming comes from enteric fermentation and one-third from animal waste [20]. The average annual values of potential CH\textsubscript{4} emissions due to livestock are: dairy cows (90 kg/year), growing cattle (65 kg/year) and cattle from 2 to 6 years old (51 kg/year) [21,22]. Livestock are the primary source of GHGs from agriculture at the continental scale, with CH\textsubscript{4} from enteric fermentation accounting for 47% of agricultural GHG emissions, while N\textsubscript{2}O emissions from manure are estimated to account for an
additional 5 - 17% of cumulative GHGs from agriculture [23].

This study falls within this perspective. Its objective is to contribute to the assessment of methane emissions due to the livestock sector in the administrative region of Kankan.

2. MATERIALS AND METHODS

2.1 Presentation of the Study Area

The administrative region of Kankan is located 781 km from the capital Conakry. It is the largest administrative region of Guinea, it covers an area of 72145 km², with five prefectures (Kankan, Kérouané, Kouroussa, Mandiana and Siguiri). The sub-Sudanian climate is characterized by the alternation of two seasons (dry and rainy) with temperatures varying from 25°C to 41°C and rainfall varying between 1100 and 1800 mm of water per year [24]. The population of the Kankan region is estimated at 2097257 inhabitants in 2016, with an average density of 28 inhabitants per km². The prefecture of Siguiri is the most populated in the region and in Guinea, with 724631 inhabitants, including 360147 women (49.70%) [25].

The methodology adopted for this research is based on theoretical and experimental approaches.

2.2 Process of Methane Emissions Due to Livestock

CH₄ emissions from manure management are generally less significant than enteric emissions. The largest emissions are associated with animal management operations in confined spaces, where manure is treated using liquid systems. Two-thirds of the CH₄ from ruminant farming comes from enteric fermentation and one-third from animal waste [26]. In a suckler cattle farm, enteric methane is responsible on average for 59% of greenhouse gas emissions [27]. Fig. 1 shows the process of enteric methane formation.

The management of manure from breeding sites to pastures through storage and spreading is the most impactful item of the livestock operation from an environmental point of view. These effluents are responsible for non-enteric CH₄ emissions.

The method for estimating CH₄ emissions from livestock consisted of categorizing livestock, assessing populations and knowing the characteristics of the diet. The equations are applied seasonally to assess livestock feed consumption, while taking into account certain performance parameters of the different animal categories, which are: average weight, average weight gain per day, average mature weight, average number of working hours per day, feeding conditions, average temperature of the rearing environment, average daily milk production, and feed digestibility rate [28].

![Fig. 1. Formation of enteric methane](image-url)
Gross energy (GE) is the energy needed by an animal to survive and support activities such as growth, lactation and gestation. This energy consumption for cattle is calculated by relation 1 [22].

\[
EB = \left(\frac{\text{ENs} + \text{ENA} + \text{ENL} + \text{ENtra} + \text{ENG}}{100} \right) + \left(\frac{\text{ENCce}}{100} \right)
\]

(1)

With:

- ENs: Net energy necessary for survival in MJ/d;
- NEa: Net energy necessary for the activities in MJ/d;
- ENL: Net energy required for lactation in MJ/d;
- ENtra: Net energy required for work in MJ/d;
- ENG: Net energy required for gestation in MJ/d;
- ENCce: Net energy required for growth in MJ/d;
- TES: Rate of net energy available in food for survival in %;
- TEC: Net energy rate in the feed available for growth in %;
- DA%: Digestible energy expressed as a percentage of gross energy. These different parameters are defined as follows [29,30].

The Net Energy Needed for Survival is the amount of energy needed to keep the animal in balance (the body neither loses nor gains energy). It is determined by relation 2.

\[
\text{ENs} = \text{Cf} \cdot (\text{PV})^{0.75}
\]

(2)

Average live weight of the animal (PV) in (kg); Cf: Coefficient varying for all animal categories in MJ/d.kg (Cf = 0.322 for cows outside the lactation period, Cf = 0.386 and Cf = 0.370 for bulls).

Net energy needed for activities is the energy that animals need for food, drink and shelter. It is based on dietary conditions rather than the characteristics of the diet itself. This energy is calculated by relation 3.

\[
\text{ENa} = \text{Ca} \cdot \text{ENs}
\]

(3)

With: Ca the activity coefficient, corresponding to the animal's food conditions (Ca = 0.36 for large open pastures).

The Net energy needed for growth is the energy of weight gain. It is determined by the relationship.

\[
\text{ENCce} = 22.02 \left(\frac{\text{PV}}{\text{GPM}} \right)^{0.75} \text{PP}^{1.097}
\]

(4)

Or:

C: Coefficient equal to 0.8 for females; 1.0 for castrates and 1.2 for bulls;

MP: Mature live weight of adult female of moderate body condition in kg;

PP: Average weight gain per day in kg/d.

The net energy needed for lactation in cattle is expressed as a function of the quantity of milk produced and the fat content in % equal to 4%. It is determined by relation 5.

\[
\text{EN}_{\text{lait}} = (1.47 + 0.40 \cdot \text{mat.gra})
\]

(5)

Milk: Quantity of milk produced in kg/d,

Mat.gra: Milk fat content in % of weight.

The Net Energy Needed for Work is the energy needed to pull the cattle. This net energy necessary for work is determined by relation 6.

\[
\text{EN}_{\text{tra}} = 0.10 \cdot \text{ENs} \cdot t
\]

(6)

Where: t is the average number of working hours per day.

Net energy needed for gestation, the energy needed for gestation lasting an average of 281 days per year, is estimated at 10% of NEs. Relation 7 makes it possible to evaluate this energy.

\[
\text{EN}_{\text{g}} = \text{Cg} \cdot \text{ENs}
\]

(7)

Where: Cg is the gestation constant for cattle, it is 0.10.

The rate of net energy available in food for survival in relation to the digestible energy consumed is calculated by relation 8.

\[
\text{TES} = [1.123 - (4.092 \cdot 10^{-3} \cdot \text{DA})] + [1.126 \cdot 10^{-5} \cdot (\text{DA})^2] - \left(\frac{25.4}{\text{DA}} \right)
\]

(8)

The rate of net energy in the feed available for growth in relation to the digestible energy consumed is calculated by relation 9.

\[
\text{TEC} = [1.164 - (5.160 \cdot 10^{-3} \cdot \text{DA})] + [1.308 \cdot 10^{-5} \cdot (\text{DA})^2] - \left(\frac{37.4}{\text{DA}} \right)
\]

(9)
Feed consumption in units of dry matter per day (kg/d), is estimated by dividing the BE by the energy density of the feed. A default value of 18.45 MJ/kg dry matter can be used if specific feed information is not available. The CMS value should be in the range of 2 to 3% of the body weight of mature or growing animals. For high-producing dairy cows, consumption may exceed 4% of body weight [19]. Relations 10 and 11 allow us to evaluate this consumption.

For growing and end-of-life cattle, we have:

\[CMS = PV^{0.75} \left[\frac{(0.2444 \cdot EN_{ma} - 0.0111 \cdot EN_{ma}^2 - 0.472)}{EN_{ma}} \right] \]

(10)

For mature cattle we have:

\[CMS = PV^{0.75} \left[\frac{(0.0119 \cdot EN_{ma}^2 + 0.0119)}{EN_{ma}} \right] \]

(11)

Where: \(EN_{ma} \) is the estimated net dietary energy concentration of the diet.

2.2.1 Potential for \(\text{CH}_4 \) emissions from enteric fermentation

Herbivores produce methane as a byproduct of enteric fermentation. The amount of methane emitted depends on the type of digestive tract, the age, the weight of the animal and the quality and quantity of food consumed. The potential for \(\text{CH}_4 \) emissions due to enteric fermentation is calculated by relationships 12 and 13.

\[\text{Em}_{\text{CH}_4} = FE(T) \left(\frac{N(T)}{10^6} \right) \]

(12)

\[\text{TEm}_{\text{CH}_4} = \sum_i E_i \]

(13)

Or:

\(\text{EB} \): Gross energy consumption in MJ/head.day;

\(\text{Ym} \): \(\text{CH}_4 \) conversion factor, this is the percentage of gross energy in the feed converted to \(\text{CH}_4 \) and the value 55.65 (MJ/kg \(\text{CH}_4 \)) represents the value.

2.2.2 Potential for \(\text{CH}_4 \) emissions from manure management

The decomposition of manure under anaerobic conditions, during storage, processing and application to pasture produces \(\text{CH}_4 \). The different steps used to assess non-enteric or manure management \(\text{CH}_4 \) emissions consist of:

- Gather data corresponding to livestock populations based on their characteristics;
- Use default values or develop country-specific emission factors for all livestock subgroups in terms of kg \(\text{CH}_4 \)/animal/year;
- Multiply the emission factors of the livestock subgroup by the population of the subgroup;
- Add emissions from all defined livestock species to determine national emissions.

Relationship 15 is used to evaluate \(\text{CH}_4 \) emissions due to manure management for a defined population, in Gg \(\text{CH}_4 \)/year.

\[\text{CH}_{4,\text{fumier}} = \sum_{(T)} \left(\frac{FE(T) \cdot N(T)}{10^6} \right) \]

(15)

Or:

\(\text{EF} \): Emission factor for the livestock category defined in kg \(\text{CH}_4 \)/head/year;

\(N(T) \): Number of heads of livestock species/category \(T \) in the country;

\(T \): Livestock species/category.

The value of the methane conversion factor (MCF) of a system varies according to the way manure is managed and the climate, it varies from 0 to 100%. It determined according to the relation 16.

The value of the methane conversion factor (MCF) of a system varies according to the way of managing the manure and the climate, it varies from 0 to 100%. It determined according to the relation 16.
With:

Volatile Solid (VS) excreted daily by livestock category in (kg VS/animal day); 365: Basis for the annual calculation of VS production per day and per year; $B_0(T)$: Maximum methane production capacity for the manure produced by livestock category in $m^3 CH_4/kg SV$; 0.67: Conversion factor from m^3 of CH_4 to kg; $MCF(S,K)$: Methane conversion factor for manure management system S per climatic region K; $GF(T,S,K)$: Fraction of manure from livestock category T treated using manure management system S in climate region K, non-dimensional.

The levels of Volatile Solid daily excreted by the categories of livestock are determined by relation 17.

$$SV = \left[EB \cdot \left(1 - \frac{DAW}{100}\right) + (EU \cdot EB) \cdot \left(1-\frac{CENDRE}{18.45}\right)\right]$$

Or:

Soluble solids (SV) excretion per day based on dry organic matter; Digestibility of food (DA = 60); (EU • BE): Urinary energy expressed as a fraction of BE. In general, most ruminants have a urinary energy of 4% BE (reduce to 2% for ruminants fed a diet of at least 85% cereals or for swine). ASH: Ash content of manure, calculated as a fraction of dry matter intake of feed (8% for cattle). If possible, use country-specific values; 18.45 in (MJ/kg) is the conversion factor for BE of diet per kg dry matter. This value is relatively constant for many types of feed based on forage or cereals, frequently consumed by livestock [31].

Given the lack of certain data related to farming methods and certain types of livestock (poultry, goats and sheep) in the region, we used the annual values of CH_4 emissions from the literature (65 kg CH_4/year for growing cattle; 0.05 kg CH_4/year for poultry and 8 kg CH_4/year for goats and sheep) [32]. Fig. 2 shows some images from the survey.

Picture 1. Cattle **Photo 2. Goats** **Photo 3. Poultry** **Photo 4. Farm dung** **Photo 5. Slaughterhouse dung** **Photo 6. Manure**

Fig. 2. Field survey images

3. RESULTS AND DISCUSSION

The results obtained during this study are presented in Table 1 and by the diagrams in Figs. 3. 4 and 5.
Table 1. CH₄ emissions from livestock and poultry in the Kankan region

<table>
<thead>
<tr>
<th>N°</th>
<th>Prefecture</th>
<th>Cattle Numbers</th>
<th>CH₄ (kg/an)</th>
<th>Poultry Numbers</th>
<th>CH₄ (kg/an)</th>
<th>Goats Numbers</th>
<th>CH₄ (kg/an)</th>
<th>Total CH₄ (kg/an)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kankan</td>
<td>23281</td>
<td>15228265</td>
<td>105000</td>
<td>5250</td>
<td>113834</td>
<td>910672</td>
<td>16144187</td>
</tr>
<tr>
<td>2</td>
<td>Kouroussa</td>
<td>294137</td>
<td>19118905</td>
<td>794</td>
<td>39.7</td>
<td>174614</td>
<td>1396912</td>
<td>20515857</td>
</tr>
<tr>
<td>3</td>
<td>Mandiana</td>
<td>326462</td>
<td>21220030</td>
<td>2500</td>
<td>1025</td>
<td>225247</td>
<td>1801976</td>
<td>23023031</td>
</tr>
<tr>
<td>4</td>
<td>Siguiri</td>
<td>372411</td>
<td>24206715</td>
<td>1000000</td>
<td>5000</td>
<td>195151</td>
<td>1561208</td>
<td>25772923</td>
</tr>
<tr>
<td>5</td>
<td>Kérouané</td>
<td>344841</td>
<td>22414665</td>
<td>95350</td>
<td>4767.5</td>
<td>129078</td>
<td>1032624</td>
<td>23452057</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>1572132</td>
<td>102188580</td>
<td>321644</td>
<td>16082.2</td>
<td>837924</td>
<td>6703392</td>
<td>108908054</td>
</tr>
</tbody>
</table>

Fig. 3. Number of livestock by prefecture

Fig. 4. Potential for CH₄ emissions from the livestock sector by species
The diagrams in Figs. 3, 4 and 5 show the potential annual CH₄ emissions due to the livestock sector by prefecture in the region. The results obtained show that the greatest quantity of emissions is recorded in Siguiri (25772923 kg/year), followed respectively by Kérouané (23452057 kg/year), Mandiana (23023031 kg/year), Kouroussa (20515857 kg/year), and Kankan (16144187 kg/year). With total annual emissions in the region of 108908054 kg/year. The values of annual CH₄ emissions are relatively equal to those of other authors [21,22], on the other hand they are relatively low compared to the annual average of certain regions of the world [33]. These potential oscillations of annual CH₄ emissions are functions of the farming method, the type of livestock, the diet and the different seasons of the year [34].

The results of this research held from October 10, 2021 to March 30, 2022 (dry season) is a first estimate of the CH₄ emission potential due to the livestock sector in the administrative region of Kankan. This study must be continued for all seasons of the year and while taking into account other agricultural activities in the country.

4. CONCLUSION

This study consisted in carrying out tests to assess the potential for methane emissions due to the livestock sector in the Administrative Region of Kankan. The results of this work show that the greatest amount of CH₄ emissions is recorded in Siguiri, followed respectively by Kérouané, Mandiana, Kouroussa, and Kankan. Thus, the management and recovery of this animal waste would make it possible to locally reduce methane emissions.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Frank Mitloehner, Ermias Kebreab, Michael Boccadoro, Methane Cows. Climate change: California dairy's path to climate neutrality. Clarity and Leadership for Environmental Awareness and Research Center, University of California, Davis clear.ucdavis.edu. 2020;

15. Building climate change resilience for African livestock in sub-Saharan Africa.

24. Faya Oulare, Ansoumane Sakouvogui, Sékou Fatoumata Conde, Mamby Keita. Study of the construction and testing of a storage collector-type solar water heater at

© 2022 Sakouvogui et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/86382