Influences of Physical Parameters of a Solar Concentrator Cooker
Journal of Energy Research and Reviews,
Page 25-37
DOI:
10.9734/jenrr/2023/v13i1255
Abstract
This work focuses on the modelling and simulation of a solar concentrator cooker. The equations governing the heat transfers of the solar cooker are discretised by an implicit finite difference method and solved via the Gaussian algorithm, coupled with an iterative procedure.
The FORTRAN numerical code that simulates the operation of the solar cooker, using meteorological data from the city of Bangui, was developed. In this simulation, the influence of physical parameters as well as of the different components of the cooker is analysed, notably: the nature of the materials used, the dimensions of the cooker. The results show that a solar flux of 900W/m² allows the determination of the different optimal parameters of the cooker.
The dimensions of the parallelepipedic cooker [60 cm*50 cm*50 cm], made it possible to obtain a thermal efficiency varying from 42% to 45%. The influence of these physical parameters shows that copper is a good conductor and the thermal conductivity is higher the thinner the wall thickness (3 mm) of the pot.
Keywords:
- Solar cooker
- physical parameters
- thermal efficiency
How to Cite
References
Boukhchana Y. Theoretical and experimental study of a cylindro-parabolic solar collector. Journal of Environmental Science and Engineering. 2011;5:1026-1030.
Yasmina Boukhchana. Etudes théorique et expérimentale des performances d’un capteur solaire cylindro- parabolique, (5èCongrès International Energie Renouvelable et Environnement).
Sharaf E. A new design for an economical, efficient, conical solar Cooker. Renewable Energy. 2002;27:599-619.
Yacine Marif. Étude comparative entre les modes de poursuite solaire d’un concentrateur solaire cylindro-parabolique, Annales Des Sciences et Technologies. 2014;6(2).
Mokhtar G. Simulation Numérique d’un Concentrateur Cylindro-Parabolique en El Oued, Algérie. International Journal of Scientific Research & Engineering Technology (IJSET). Copyright IPCO-2015;3(2):68-74.
ISSN: 2356-5608.
Al-SoudM S. A parabolic solar cooker with automatic two axes sun tracking system, Applied Energy. 2010;87:463–470.
Klemens Schwarzer. Characterisation and design methods of solar cookers, Solar E Mgmtvol. 1990;30(1):9-16.
José M. Arenas, Design, development and testing of a portable parabolic 2. Solar Kitchen; march 2006.
Judith. Multiple use communal solar cookers. Solar Energy. 2004;77:217– 223.
Pohekar SD. Utility assessment of parabolic solar cooker as adomestic cooking device in India. Renewable Energy. 2006;31:1827–1838.
Fraser P. Stirling dish system performance and prediction model. MSc thesis inmechanical engineering. Madison, USA: University of Wisconsin; 2008.
Rabl A. Solar concentrators with maximal concentration for cylindrical absorbers. Applied Optics. 1976;15(7):1871–3.
Mohamed, Parabolic solar cooker with automatic system tracking two axis. Applied Eenergy. 2010;87:463-470.
Kumar S, Reddy N.Numerical investigation of natural convection heat loss in modified cavity receiver for fuzzy focal solar dish concentrator. J Solar Energy. 2007;81: 846–55.
Ali A. Portable solar cooker and water heater, Energy Conversion and Management. 2010;51:1605-1609.
Mullick. Thermal test procedure for a paraboloid concentrateur solar cooker. Solar Energy. 1991;46(3):39-144.
Kumar S, Reddy N.Numerical investigation of natural convection heat loss in modified cavity receiver for fuzzy focal solar dish concentrator. J Solar Energy. 2007;81: 846–55.
Rabl A. Solar concentrators with maximal concentration for cylindrical absorbers. Applied Optics. 1976;15(7): 1871–3.
Judith Franco, Pasteurization of goat milk using a low cost solar concentrator, Solar Energy. 2008;82:1088-1094.
Patel NV, Philip SK. Performance evaluation of three solar concentrating cookers. Renewable Energy. 2000;20: 347–55.
Rachel. Development and performance analysis ofcompound parabolic solar concentrators with reduced gap losses—‘V’ groove reflector. Renewable Energy. 2002;27:259–275.
Severin Campuzano. Development of the solar cooker jorhejpatarnskua: Thermal standard analysis of solar cooker with several absorber pots. Energy Procedia. 2014;57:1573–1582.
Sonune AV. Development of a domestic concentrating cooker, Renewable Energy. 2003;28:1225-134.
Abu-Malouh R. Design, construction and operation of spherical solar cooker with automatic sun tracking system, Energy Conversion and Management. 2011;52: 615–620.
Funk P. Evaluating the international standar procedure for testing solar cookers and reporting performances, Solar Energy. 2000;68(1):1-7.
Olwi A. Computer simulation of the solar pressure cooker. Solar Energy. 1988; 40(3):259–268.
Peajack ER. Mathematical model of the thermal performance of box-type solar cookers. Renewable Energy. 1991;1(5/6): 609–615.
Soriaverdugo. Experimental analysis and simulation of the performance of a box-type solar cooker, Energy for Sustainable Development. 2015;29:65– 71.
El-Sebaii AA. Thermal performance of a box type solar cooker with outer-inner reflectors. Energy. 1997;22:969–78.
Kawthar Dhif. Thermal Analysis of the Solar Collector Cum Storage System Using a Hybrid-Nanofluids. Journal of Nanofluids. 2021;10:616–626.
Ines Chabani. MHD Flow of a Hybrid Nano-Fluid in a Triangular Enclosure with Zigzags and an Elliptic Obstacle, Academic Editors; January 2022
Mehemet Esen. Thermal performance of a solar cooker integrated vacuum- tube with heat pipes containing different refrigerants; December 2003.
Sharma. Thermal performance evaluation of a latent heat storage unit for late evening cooking in a solar cooker having three reflectors; April 2002.
Olwi. Towards convenient solar cooking experimental results of an indoor model, Energy Convers Mgmt. 1994;35(9):793-799.
Hussein. Experimental investigation of novel indirect solar cooker with indoor PCM thermal storage and cooking unit, Energy Conversion and Management. 2008;49:2237–2246.
Abishek. A thermodynamic review on solar box type cookers, Renewable and Sustainable Energy Reviews. 2011;15: 3301–3318.
Morakapala. Domestic solar hot water systems: Developments, evaluations and essentials forviability with a special reference to India. Renewable and Sustainable Energy Reviews. 2011;15: 3850–3861.
Daniel M Kammen. Comparative study of Box-type Solar Cooker in Nicaranga. Solar & Wind Technology. 1990;7(3):463-471.
Soria Verdugo. Experimental analysis and simulation of the performance of a box-type solar cooker. Energy for Sustainable Development. 2015;29:65– 71.
-
Abstract View: 74 times
PDF Download: 27 times