Journal of Energy Research and Reviews

  • About
    • About the Journal
    • Submissions & Author Guideline
    • Accepted Papers
    • Editorial Policy
    • Editorial Board Members
    • Reviewers
    • Propose a Special Issue
    • Printed Hard copy
    • Subscription
    • Membership
    • Publication Ethics and Malpractice Statement
    • Digital Archiving
    • Contact
  • Archives
  • Indexing
  • Publication Charge
  • Submission
  • Testimonials
  • Announcements
Advanced Search
  1. Home
  2. Archives
  3. 2022 - Volume 12 [Issue 1]
  4. Original Research Article

Submit Manuscript


Subscription



  • Home Page
  • Author Guidelines
  • Editorial Board Member
  • Editorial Policy
  • Propose a Special Issue
  • Membership

Central Composite Design of Biodiesel Production from Waste Cooking Oil using Tympanotonus fuscatus (Periwinkle) Shells as Catalyst

  • Ubani O. Amune
  • Shegun K. Otoikhian

Journal of Energy Research and Reviews, Page 16-35
DOI: 10.9734/jenrr/2022/v12i130290
Published: 4 August 2022

  • View Article
  • Download
  • Cite
  • References
  • Statistics
  • Share

Abstract


Biodiesel has been generally accepted as an environmentally – safer alternative to fossil based fuels. However, concerns of the cost of production, use of acid catalysts leading to corrosion, and recovery of homogenous catalyst remain. This study therefore seeks to optimize the transesterification process parameters in the conversion of waste cooking oil (WCO) using waste Tympanotonus fuscatus shell (WTFS). The catalysts were characterized using XRD, FTIR, and XRF. Temperatures ranging from 30°C to 90°C, catalyst loading from 1 to 10% by weight, and reaction durations from 30 to 180 minutes were examined for the transesterification technique. The physiochemical properties of the waste cooking oil revealed a high acid value (10.02mgKOH/g), kinematic viscosity of 13.30 mm2/s, pour point, 156oC, flash point of 104oC, Calorific value of 34.78 MJ/kg, carbon content of 2.65% m/m, among other parameters while the GCMS analysis indicated the presence of C16 to C21. The biodiesel however showed an acid value of 0.416 mgKOH/g, viscosity of 4.638 mm2/s, pour point of 0.3oC, flash point of 104oC, calorific value of 40.17 MJ/kg, and carbon content of 0.019% m/m which were in agreement with the EU and American standards. The elemental composition and crystalline structure of the catalyst revealed a considerable concentration of CaO, MgO, Al2O3, SiO2, and other metal oxides. The CCD approach used to design the experiments was significant (p <0.0001) and the biodiesel synthesis which resulted in a maximum yield of 91.70% was obtained with 5.5% WFTS, 105 minutes of reaction time, 65 oC, and a 1:7 oil–Methanol ratio. The operating parameters of temperature (p <0.0001), catalyst load (p = 0.00713), and time (p = 0.0288) all had significant effects on biodiesel yield; however, temperature had a stronger influence than the other process variables. The ANOVA results showed that the factors were extremely significant while Fit statistics and model comparison revealed a coefficient of determination of 97.66%, with the predicted value of 84.68% and the adjusted value of 95.00%. The biodiesel produced met the biodiesel standards.


Keywords:
  • Central composite design
  • heterogeneous catalysts
  • optimization
  • response surface method
  • waste cooking oil
  • Waste Tympanotonus Fuscatus Shell (WFTS)
  • Full Article - PDF
  • Review History

How to Cite

O. Amune, U., & K. Otoikhian, S. (2022). Central Composite Design of Biodiesel Production from Waste Cooking Oil using Tympanotonus fuscatus (Periwinkle) Shells as Catalyst. Journal of Energy Research and Reviews, 12(1), 16-35. https://doi.org/10.9734/jenrr/2022/v12i130290
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver

References

Mercy Nisha Pauline JM, Sivaramakrishnan R, Pugazhendhi A, Anbarasan T, Achary A. Transesterification kinetics of waste cooking oil and its diesel engine performance. Fuel. Feb 2021;285:119108.

DOI: 10.1016/j.fuel.2020.119108.

Yusuff AS, Gbadamosi AO, Popoola LT. Biodiesel production from transesterified waste cooking oil by zinc-modified anthill catalyst: Parametric optimization and biodiesel properties improvement. J Environ Chem Eng. Apr 2021;9(2): 104955.

DOI: 10.1016/j.jece.2020.104955.

Santana JCC, Miranda AC, Souza L, Yamamura CLK, Coelho DdF, Tambourgi EB et al. Clean production of biofuel from waste cooking oil to reduce emissions, fuel cost, and respiratory disease hospitalizations. Sustainability. Aug 2021; 13(16):9185.

DOI: 10.3390/su13169185.

Kuniyil M, Shanmukha Kumar JV, Adil SF, Assal ME, Shaik MR, Khan M et al. Production of biodiesel from waste cooking oil using ZnCuO/N-doped graphene nanocomposite as an efficient heterogeneous catalyst. Arab J Chem. Mar 2021;14(3):102982.

DOI: 10.1016/j.arabjc.2020.102982.

Azman NS, Marliza TS, Mijan NA, Yun Hin TYY, Khairuddin N. Production of biodiesel from waste cooking oil via deoxygenation using Ni-Mo/Ac catalyst. Processes. 2021;9(5):12.

DOI: 10.3390/pr9050750.

Erchamo YS, Mamo TT, Workneh GA, Mekonnen YS. Improved biodiesel production from waste cooking oil with mixed methanol–ethanol using enhanced eggshell-derived CaO nano-catalyst. Sci Rep. 2021;11(1):6708.

DOI: 10.1038/s41598-021-86062-z, PMID 33758293.

Nadeem F, Bhatti IA, Ashar A, Yousaf M, Iqbal M, Mohsin M et al. Eco-benign biodiesel production from waste cooking oil using eggshell derived MM-CaO catalyst and condition optimization using RSM approach. Arabian Journal of Chemistry. 2021;14(8):11.

DOI: 10.1016/j.arabjc.2021.103263.

Katekaew S, Suiuay C, Senawong K, Seithtanabutara V, Intravised K, Laloon K. Optimization of performance and exhaust emissions of single-cylinder diesel engines fueled by blending diesel-like fuel from Yang-hard resin with waste cooking oil biodiesel via response surface methodology. Fuel. 2021;304: 12.

DOI: 10.1016/j.fuel.2021.121434.

Liu Y, Yang X, Adamu A, Zhu Z. Economic evaluation and production process simulation of biodiesel production from waste cooking oil. Current Research in Green and Sustainable Chemistry. 2021;4:55.

DOI: 10.1016/j.crgsc.2021.100091.

Naeem MM, Al-Sakkari EG, Boffito DC, Gadalla MA, Ashour FH. One-pot conversion of highly acidic waste cooking oil into biodiesel over a novel bio-based bi-functional catalyst. Fuel. Jan 2021;283:118914.

DOI: 10.1016/j.fuel.2020.118914.

Tan YH, Abdullah MO, Nolasco-Hipolito C, Taufiq-Yap YH. Waste ostrich- and chicken-eggshells as heterogeneous base catalyst for biodiesel production from used cooking oil: Catalyst characterization and biodiesel yield performance. Appl Energy. Dec 2015;160:58- 70.

DOI: 10.1016/j.apenergy.2015.09.023.

Rezania S, Oryani B, Park J, Hashemi B, Yadav KK, Kwon EE et al. Review on transesterification of non-edible sources for biodiesel production with a focus on economic aspects, fuel properties and by-product applications. Energy Convers Manag. Dec 2019;201:112155.

DOI: 10.1016/j.enconman.2019.112155.

Moyo LB, Iyuke SE, Muvhiiwa RF, Simate GS, Hlabangana N. Application of response surface methodology for optimization of biodiesel production parameters from waste cooking oil using a membrane reactor. S Afr J Chem Eng. 2021;35:1-7.

DOI: 10.1016/j.sajce.2020.10.002.

Arrais Gonçalves M, Karine Lourenço Mares E, Roberto Zamian J, Narciso da Rocha Filho G, Rafael Vieira da Conceição L. Statistical optimization of biodiesel production from waste cooking oil using magnetic acid heterogeneous catalyst MoO3/SrFe2O4. Fuel. Nov 2021;304:121463.

DOI: 10.1016/j.fuel.2021.121463.

Maegala NM, Anupriya S, Hazeeq Hazwan A, Nor Suhaila Y, Hasdianty A. Conversion of waste cooking oil to glycerol by halal microbial lipase. IOP Conf Ser Earth Environ Sci. Jul 2020;505(1): 012056.

DOI: 10.1088/1755-1315/505/1/012056.

Loizides M, Loizidou X, Orthodoxou D, Petsa D. Circular Bioeconomy in Action: Collection and Recycling of Domestic Used Cooking Oil through a Social, Reverse Logistics System. Recycling. Apr 2019;4(2):16.

DOI: 10.3390/recycling4020016.

Bhatia SK, Gurav R, Choi TR, Kim HJ, Yang SY, Song HS et al. Conversion of waste cooking oil into biodiesel using heterogenous catalyst derived from cork biochar. Bioresour Technol. Apr 2020; 302:122872.

DOI:10.1016/j.biortech.2020.122872, PMID 32014731.

Bukkarapu KR. Comparative study of different biodiesel–diesel blends. Int J Ambient Energy. Apr 2019;40(3):295-303.

DOI: 10.1080/01430750.2017.1393775.

Singh-Ackbarali D, Maharaj R, Mohamed N, Ramjattan-Harry V. Potential of used frying oil in paving material: solution to environmental pollution problem. Environ Sci Pollut Res Int. May 2017;24(13):12220-6.

DOI: 10.1007/s11356-017-8793-z, PMID 28353106.

Borges ME, Díaz L. Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: a review. Renew Sustain Energy Rev. Jun 2012;16(5):2839-49.

DOI: 10.1016/j.rser.2012.01.071.

Helmi M, Tahvildari K, Hemmati A, Aberoomand azar P, Safekordi A. Phosphomolybdic acid/graphene oxide as novel green catalyst using for biodiesel production from waste cooking oil via electrolysis method: Optimization using with response surface methodology (RSM). Fuel. 2021;287:16.

DOI: 10.1016/j.fuel.2020.119528.

Okonkwo CP, Ajiwe VIE, Mmaduakor EC, Nwankwo NV. Modelling and Optimization of biodiesel Production Process Parameters from Jansa Seed Oil (Cussonia bateri) Using Artificial Neural Network. Am J Appl Chem; 2008.

Gouran A, Aghel B, Nasirmanesh F. Biodiesel production from waste cooking oil using wheat bran ash as a sustainable biomass. Fuel. 2021;295:9.

DOI: 10.1016/j.fuel.2021.120542.

Farooq M, Ramli A, Naeem A. Biodiesel production from low FFA waste cooking oil using heterogeneous catalyst derived from chicken bones. Renew Energy. Apr 2015;76:362-8.

DOI: 10.1016/j.renene.2014.11.042.

Farooq M, Ramli A, Naeem A, Mahmood T, Ahmad S, Humayun M et al. Biodiesel production from date seed oil (Phoenix dactylifera L.) via egg shell derived heterogeneous catalyst. Chemical Engineering Research and Design. 2018;132:644-51.

DOI: 10.1016/J.CHERD.2018.02.002.

Akhabue CE, Osa-Benedict EO, Oyedoh EA, Otoikhian SK. Development of a bio-based bifunctional catalyst for simultaneous esterification and transesterification of neem seed oil: Modeling and optimization studies. Renew Energy. Jun 2020;152:724-35.

DOI: 10.1016/j.renene.2020.01.103.

Uprety BK, Chaiwong W, Ewelike C, Rakshit SK. Biodiesel production using heterogeneous catalysts including wood ash and the importance of enhancing byproduct glycerol purity. Energy Convers Manag. May 2016;115:191-9.

DOI: 10.1016/j.enconman.2016.02.032.

Ezebor F, Khairuddean M, Abdullah AZ, Boey PL. Oil palm trunk and sugarcane bagasse derived heterogeneous acid catalysts for production of fatty acid methyl esters. Energy. 2014;70(C):493-503.

DOI: 10.1016/j.energy.2014.04.024.

Ho WWS, Ng HK, Gan S. Development and characterisation of novel heterogeneous palm oil mill boiler ash-based catalysts for biodiesel production. Bioresour Technol. Dec 2012;125:158- 64.

DOI:10.1016/j.biortech.2012.08.099, PMID 23026328.

Endut A, Abdullah SHYS, Hanapi NHM, Hamid SHA, Lananan F, Kamarudin MKA et al. Optimization of biodiesel production by solid acid catalyst derived from coconut shell via response surface methodology. Int Biodeterior Biodegrad. Oct 2017;124:250-7.

DOI: 10.1016/j.ibiod.2017.06.008.

Etim AO, Betiku E, Ajala SO, Olaniyi PJ, Ojumu TV. Potential of ripe plantain fruit peels as an ecofriendly catalyst for biodiesel synthesis: optimization by artificial neural network integrated with genetic algorithm. Sustainability. Mar 2018;10(3):Art no. 3.

DOI: 10.3390/su10030707.

Gohain M, Devi A, Deka D. Musa balbisiana Colla peel as highly effective renewable heterogeneous base catalyst for biodiesel production. Ind Crops Prod. 2017;109(Aug):8-18.

DOI: 10.1016/j.indcrop.2017.08.006.

Nisar J, Razaq R, Farooq M, Iqbal M, Khan RA, Sayed M et al. Enhanced biodiesel production from Jatropha oil using calcined waste animal bones as catalyst. Renew Energy. Feb 2017;101:111-9.

DOI: 10.1016/j.renene.2016.08.048.

Ranganathan SV, Narasimhan SL, Muthukumar K. An overview of enzymatic production of biodiesel. Bioresour Technol. Jul 2008;99(10):3975-81.

DOI: 10.1016/j.biortech.2007.04.060, PMID 17591439.

Gama PE, Gil RAdSS, Lachter ER. Produção de biodiesel através de transesterificação in situ de sementes de girassol via catálise homogênea e heterogênea. Quím Nova. 2010;33(9):1859-62.

DOI: 10.1590/S0100-40422010000900007.

Aimikhe VJ, Lekia GB. ”An Overview of the Applications of Periwinkle (Tympanotonus fuscatus) Shells”, CJAST. CJAST. Aug 2021:31-58.

DOI: 10.9734/cjast/2021/v40i1831442.

Mo KH, Alengaram UJ, Jumaat MZ, Lee SC, Goh WI, Yuen CW. Recycling of seashell waste in concrete: A review. Construction and Building Materials. 2018;162:751-64.

DOI: 10.1016/J.CONBUILDMAT.2017.12.009.

Hou Y, Shavandi A, Carne A, Bekhit AA, Ng TB, Cheung RCF et al. Marine shells: Potential opportunities for extraction of functional and health-promoting materials. Crit Rev Environ Sci Technol. 2016 [online];46(11-12):1047-116.

DOI: 10.1080/10643389.2016.1202669.

Piker A, Tabah B, Perkas N, Gedanken A. A green and low-cost room temperature biodiesel production method from waste oil using egg shells as catalyst. Fuel. Oct 2016;182:34-41.

DOI: 10.1016/j.fuel.2016.05.078.

Viriya-empikul N, Krasae P, Puttasawat B, Yoosuk B, Chollacoop N, Faungnawakij K. Waste shells of mollusk and egg as biodiesel production catalysts. Bioresour Technol. May 2010;101(10):3765-7.

DOI: 10.1016/j.biortech.2009.12.079, PMID 20079632.

Waste shells of mollusk and egg as biodiesel production catalysts – ScienceDirect [cited May 30, 2022].

Available:https://www.sciencedirect.com/science/article/abs/pii/S0960852409017441.

Kurniawan E, Perdana F. Biodiesel production of waste cooking oil catalyzed by CAO derived from snail (achatina FULICA) shell waste. J Chem Process Mater Technol. Jan 2022;1(1):Art no. 1. DOI: 10.36499/jcpmt.v1i1.5860.

Phewphong S, Roschat W, Pholsupho P, Moonsin P, Promarak V, Yoosuk B. Biodiesel production process catalyzed by acid-treated golden apple snail shells (Pomacea canaliculata)-derived CaO as a high-performance and green catalyst. Eng Appl Sci Res. 2022;49(1):Art no. 1.

Kaewdaeng S, Sintuya P, Nirunsin R. Biodiesel production using calcium oxide from river snail shell ash as catalyst. Energy Procedia. Oct 2017;138:937-42.

DOI: 10.1016/j.egypro.2017.10.057.

Liu H, Guo Hs, Wang Xj, Jiang Jz, Lin H, Han S et al. Mixed and ground KBr-impregnated calcined snail shell and kaolin as solid base catalysts for biodiesel production. Renew Energy. Aug 2016;93:648-57. DOI: 10.1016/j.renene.2016.03.017.

Ogunsola AD, Durowoju MO, Alade AO, Jekayinfa SO, Ogunkunle O. Modeling and optimization of two-step shea butter oil biodiesel synthesis using snail shells as heterogeneous base catalysts. Energy Adv. 2022;1(2):113-28.

DOI: 10.1039/D1YA00042J.

Optimization and kinetic study of biodiesel production from Hydnocarpus wightiana oil and dairy waste scum using snail shell CaO nanocatalyst – ScienceDirect [cited May 30, 2022].

Available:https://www.sciencedirect.com/science/article/abs/pii/S0960148119310018.

Laskar IB, Rajkumari K, Gupta R, Chatterjee S, Paul B, Rokhum SL. Waste snail shell derived heterogeneous catalyst for biodiesel production by the transesterification of soybean oil. RSC Adv. 2018;8(36):20131-42.

DOI: 10.1039/C8RA02397B, PMID 35541639.

Silitonga AS, Shamsuddin AH, Mahlia TMI, Milano J, Kusumo F, Siswantoro J et al. Biodiesel synthesis from Ceiba pentandra oil by microwave irradiation-assisted transesterification: ELM modeling and optimization. Renew Energy. Feb 2020;146:1278-91.

DOI: 10.1016/j.renene.2019.07.065.

Adepoju TF, Ibeh MA, Udoetuk EN, Babatunde EO. Quaternary blend of Carica papaya - Citrus sinesis - Hibiscus sabdariffa - Waste used oil for biodiesel synthesis using CaO-based catalyst derived from binary mix of Lattorina littorea and Mactra coralline shell. Renew Energy. Jun 2021;171:22-33.

DOI: 10.1016/j.renene.2021.02.020.

Akpa JG, Dagde KK. Effect of activation method and agent on the characterization of Prewinkle shell activated carbon. Chem Process Eng Research. 2018;56(0):24.

Offiong UD, Akpan GE. Assessment of physico-chemical properties of periwinkle shell ash as partial replacement for cement in concrete. 2017;1(7):4.

Omar WNNW, Nordin N, Mohamed M, Amin NAS. A two-step biodiesel production from waste cooking oil: optimization of pre-treatment step. J Appl Sci. 2009;9(17):3098-103.

DOI: 10.3923/jas.2009.3098.3103.

Sanli H, Canakci M. Effects of different alcohol and catalyst usage on biodiesel production from different vegetable oils. Energy Fuels. Jul 2008;22(4):2713-9.

DOI: 10.1021/ef700720w.

Thangaraj B, Solomon PR, Muniyandi B, Ranganathan S, Lin L. Catalysis in biodiesel production—a review. Clean Energy. Feb 2019;3(1):2-23.

DOI: 10.1093/ce/zky020.

Yan S, Kim M, Salley SO, Ng KYS. Oil transesterification over calcium oxides modified with lanthanum. Applied Catalysis A: General. 2009;360(2):163-70.

DOI: 10.1016/J.APCATA.2009.03.015.

Keihani M, Esmaeili H, Rouhi P. ”Biodiesel Production from Chicken Fat Using Nano-calcium Oxide Catalyst and Improving the Fuel Properties via Blending with Diesel”, PCR. Vol. 6(3, Sep); 2018.

DOI: 10.22036/pcr.2018.114565.1453.

Eryilmaz T. Process optimization for biodiesel production from neutralized waste cooking oil and the effect of this biodiesel on engine performance. CT&F Cienc Tecnol Futuro. Jun 2018;8(1):121- 7.

DOI: 10.29047/01225383.99.

Musa H, Eric D, Hassan A, Usman B, Isa NF, Alhassan AS. Optimized biodiesel Production from Jatropha curcas oil. Energy Res J. Jan 2021;12(1):39-44.

DOI: 10.3844/erjsp.2021.39.44.

Fatima A, Zafar M, Ahmad M, Sultana S, Ali MI. ”Parametric characterization and statistical optimization of Argemone ochroleuca (Mexican Poppy) methyl esters as a renewable source of energy”, null. Energy Sources Part A: Recovery Utilization and Environmental Effects. Oct 2017;39(19):1963-9.

DOI: 10.1080/15567036.2017.1391896.

Leung DYC, Guo Y. Transesterification of neat and used frying oil: Optimization for biodiesel production. Fuel Process Technol. Oct 2006;87(10):883-90.

DOI: 10.1016/j.fuproc.2006.06.003.

Adepoju TF. Optimization processes of biodiesel production from pig and neem (Azadirachta indica a.Juss) seeds blend oil using alternative catalysts from waste biomass. Ind Crops Prod. Jul 2020;149:112334.

DOI: 10.1016/j.indcrop.2020.112334.

Tang Y, Chen G, Zhang J, Lu Y. Highly active CaO for the transesterification to biodiesel production from rapeseed oil. Bull Chem Soc Eth. 2011;25(1):Art no. 1. DOI: 10.4314/bcse.v25i1.63359.

Trejo-Zárraga F, Hernández-Loyo Fde J, Chavarría-Hernández JC, Sotelo-Boyás R. Kinetics of transesterification processes for biodiesel production. IntechOpen; 2018.

DOI: 10.5772/intechopen.75927.

Ogaga Ighose B, Adeleke IA, Damos M, Adeola Junaid H, Ernest Okpalaeke K, Betiku E. Optimization of biodiesel production from Thevetia peruviana seed oil by adaptive neuro-fuzzy inference system coupled with genetic algorithm and response surface methodology. Energy Conversion and Management. 2017 [online];132:231-40.

DOI: 10.1016/j.enconman.2016.11.030.

Mansourpoor M. Optimization of biodiesel production from sunflower oil using response surface methodology. J Chem Eng Process Technol. 2012;03(5).

DOI: 10.4172/2157-7048.1000141.

Barabas I, Todoru I-A. Biodiesel quality, standards and properties. In:Tech Montero G, editor, Biodiesel- quality, emissions and by-products; 2011.

DOI: 10.5772/25370.

Montero G, Stoytcheva M. Biodiesel-quality, emissions and by-products; 2011.

Ayetor GK, Sunnu A, Parbey J. Effect of biodiesel production parameters on viscosity and yield of methyl esters: Jatropha curcas, Elaeis guineensis and Cocos nucifera. Alex Eng J. Dec 2015;54(4):1285-90.

DOI: 10.1016/j.aej.2015.09.011.

EN 14214; Nov 07, 2021. Wikipedia, Wikipedia. [accessed: Jun 04, 2022] [online].

Available:https://en.wikipedia.org/w/index.php?title=EN_14214&oldid=1054080525.

Alternative fuels data center: ASTM biodiesel specifications [cited Jun 04, 2022].

Available:https://afdc.energy.gov/fuels/biodiesel_specifications.html.

Ramírez Verduzco LF. Density and viscosity of biodiesel as a function of temperature: Empirical models. Renew Sustain Energy Rev. Mar 2013;19:652-65.

DOI: 10.1016/j.rser.2012.11.022.

Pratas MJ, Freitas S, Oliveira MB, Monteiro SC, Lima AS, Coutinho JAP. Densities and viscosities of minority fatty acid methyl and ethyl esters present in biodiesel. J Chem Eng Data. May 2011;56(5):2175-80.

DOI: 10.1021/je1012235.

Giakoumis EG, Sarakatsanis CK. Estimation of biodiesel cetane number, density, kinematic viscosity and heating values from its fatty acid weight composition. Fuel. Jun 2018;222:574-85.

DOI: 10.1016/j.fuel.2018.02.187.

Bencheikh K, Atabani AE, Shobana S, Mohammed MN, Uğuz G, Arpa O et al. Fuels properties, characterizations and engine and emission performance analyses of ternary waste cooking oil biodiesel–diesel–propanol blends. Sustain Energy Technol Assess. Oct 2019;35:321-34.

DOI: 10.1016/j.seta.2019.08.007.

Gülüm M, Bilgin A. A comprehensive study on measurement and prediction of viscosity of biodiesel-diesel-alcohol ternary blends. Energy. Apr 2018;148:341-61.

DOI: 10.1016/j.energy.2018.01.123.

Razzaq L, Farooq M, Mujtaba MA, Sher F, Farhan M, Hassan MT et al. Modeling viscosity and density of ethanol-diesel-biodiesel ternary blends for sustainable environment. Sustainability. 2020;12(12):5186.

DOI: 10.3390/su12125186.

Hossain AK, Davies PA. Plant oils as fuels for compression ignition engines: A technical review and life-cycle analysis. Renew Energy. 2010;35(1):1-13.

DOI: 10.1016/j.renene.2009.05.009.

Tesfa B, Mishra R, Gu F, Powles N. Prediction models for density and viscosity of biodiesel and their effects on fuel supply system in CI engines. Renew Energy. Dec 2010;35(12):2752-60.

DOI: 10.1016/j.renene.2010.04.026.

Nabi MdN, Rahman MM, Akhter MS, Md. M. Rahman, and Md.S. Akhter. Appl Therm Eng. Aug 2009;29(11-12):2265-70.

DOI:10.1016/j.applthermaleng.2008.11.009.

Moser B. Biodiesel production, properties, and feedstocks. In Vitro Cell Dev Biol Plant. 2010;45:285-347.

DOI: 10.1007/978-1-4419-7145-6_15.

Roy MM, Wang W, Bujold J. Biodiesel production and comparison of emissions of a DI diesel engine fueled by biodiesel–diesel and canola oil–diesel blends at high idling operations. Appl Energy. 2013; 106(C):198-208.

DOI: 10.1016/j.apenergy.2013.01.057.
  • Abstract View: 33 times
    PDF Download: 13 times

Download Statistics

Downloads

Download data is not yet available.
  • Linkedin
  • Twitter
  • Facebook
  • WhatsApp
  • Telegram
Make a Submission / Login
Information
  • For Readers
  • For Authors
  • For Librarians
Current Issue
  • Atom logo
  • RSS2 logo
  • RSS1 logo


© Copyright 2010-Till Date, Journal of Energy Research and Reviews. All rights reserved.